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The ideal conductor limit
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Bâtiment 211, 91405 Orsay Cedex, France

Received 16 November 1995

Abstract. This paper compares two methods of statistical mechanics used to study a classical
Coulomb systemS near an ideal conductorC. The first method consists in neglecting the
thermal fluctuations in the conductorC and constrains the electric potential to be constant on
it. In the second method the conductorC is considered as a conducting Coulomb system the
charge correlation length of which goes to zero. It has been noticed in the past, in particular
cases, that the two methods yield the same results for the particle densities and correlations in
S. It is shown that this is true in general for the quantities which depend only on the degrees
of freedom ofS, but that some other quantities, especially the electric potential correlations and
the stress tensor, are different in the two approaches. In spite of this the two methods give the
same electric forces exerted onS.

1. Introduction

In the equilibrium statistical mechanics of classical Coulomb systems (for instance
electrolytes), sometimes one is led to assume that some wall is an ideal conductor (for
instance for mimicking an electrode). Two methods have been used to deal with a classical
(i.e. non-quantum) Coulomb systemS near an ideal conductorC. The first one is to consider
from the beginning that the conductorC is ideal and take this into account by constraining
the electric potential to be constant onC [1–3]. The second method is to treat the conductor
C as a genuine Coulomb system with a microscopic structure and take the limit of zero
correlation length [4, 5]; indeed, in that limit, the statistical average of the charge density on
the conductorC becomes a surface charge density of zero thickness, a characteristic feature
of ideal conductors.

Both methods gave the same results for some quantities in the Coulomb systemS, such
as the particle densities, and even the fluctuations of these densities as described by the
particle correlation functions. The reason for this agreement about some fluctuations is not
obvious. In the first approach, there are no fluctuations inside the conductorC. In the
second approach, there are thermal fluctuations inside the conductorC; for instance, the
potential/potential correlation function has a universal simple form [6] (in three dimensions,
kBT divided by the distance) for distances large compared to the microscopic scale and these
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correlations do not disappear as the zero correlation length limit is taken. However, this
seems to have no influence on some quantities in the Coulomb systemS. Nevertheless we
shall show that some other quantities inS—for instance the electric potential correlations—
are different depending on the method used to compute them.

The aim of the present paper is to discuss the relationship between the two approaches.
We first treat a simple two-dimensional example in section 2, where we consider two parallel
lines; one is the ideal conductorC and the other is the Coulomb systemS. The two methods
are worked out to find the electric potential and charge correlations and the stress tensor,
and we compare the results. In section 3, we treat the general case, look at quantities such
as the partition function, the correlations and the stress tensor, and again we compare the
results obtained through the two methods.

The reader may either look first at section 2, or go directly to section 3.

2. A simple two-dimensional example

2.1. The model

For simplicity, we consider a system of ‘restricted dimension’ [7]. The Coulomb interaction
between two point-chargesq andq ′ at a distancer from each other has the two-dimensional
form −qq ′ ln r, but the particles are constrained to live on one-dimensional lines. In the
planexOy, the liney = 0 is the conductorC at zero potential, while the Coulomb system
S lives on the liney = W (W > 0).

We consider two cases: either the conductorC is an ideal one from the beginning, or
it is the high-density limit of a Coulomb system (in that limit, the microscopic scale goes
to zero). We compute the potential and charge correlations and the average stress tensor in
each case. These quantities can be obtained by a macroscopic approach [6], using linear
response theory and a conducting behaviour assumption. Alternatively, exact microscopic
results can be derived in a special model.

A position r = (x, y) is conveniently represented by the complex numberz = x + iy.

2.2. The ideal conductor approach

The liney = 0 is assumed to be a grounded ideal conductorC, in that sense that the electric
potential is constrained to vanish on that line. Thus, in the regiony, y′ > 0, the potential
at z′ due to a unit point-charge atz is

G(r , r ′) = − ln

∣∣∣∣z − z′

z − z̄′

∣∣∣∣ (2.1)

which does vanish on the liney = 0. A Coulomb systemS lies on the liney = W . This
model has already been studied [7]. Under the assumption thatS is a conductor, a macros-
copic approach [6] allows computation of the correlation function for the electric potential
8 at two pointsr and r ′ (providedW is macroscopic andr and r ′ are at macroscopic
distances from the liney = W ). These correlations are

β〈8(r )8(r ′)〉T = − ln

∣∣∣∣z − z′

z − z̄′
sinh π

2W (z − z̄′)
sinh π

2W (z − z′)

∣∣∣∣ if (y, y ′) ∈ ]0,W [2 (2.2a)

β〈8(r )8(r ′)〉T = − ln

∣∣∣∣z − z′

z − z̄′

∣∣∣∣ if (y, y ′) ∈ ]0,W [×]W,+∞[ (2.2b)

β〈8(r )8(r ′)〉T = − ln

∣∣∣∣z − z̄′ − iW

z − z̄′

∣∣∣∣ if (y, y ′) ∈ ]W,+∞[2. (2.2c)
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(〈. . .〉T means a truncated statistical average andβ is the inverse temperature.) In the region
y 6 0, 8(r ) = 0 without fluctuations.

From (2.2), one can compute the correlations of the electric fieldE (r ), and from the
discontinuities ofEy(r ) on the linesy = 0 andy = W one obtains the correlations for the
charge densitiesσ(r ) (charge per unit length) on these lines:

β〈σ(r )σ (r ′)〉T = − 1

2π2

[( π

2W

)2
(

1

sinh π
2W (x − x ′)

)2

−
(

1

x − x ′

)2
]

if r and r ′ are on the ideal conductor (2.3a)

β〈σ(r )σ (r ′)〉T = −1

2

(
1

2W

)2 (
1

cosh π
2W (x − x ′)

)2

if r is on the ideal conductor andr ′ on the Coulomb system (2.3b)

and

β〈σ(r )σ (r ′)〉T = − 1

2π2

[( π

2W

)2
(

1

sinh π
2W (x − x ′)

)2

+
(

1

x − x ′

)2
]

if r and r ′ are on the Coulomb system. (2.3c)

((2.3b) and (2.3c) disregard the microscopic detail; (2.3c) must be regularized atx−x ′ = 0).
As expected, ifW → ∞, the fluctuations (2.3a) on the ideal conductorC now alone in
space disappear, as well as the correlations (2.3b) between the ideal conductorC and the
Coulomb systemS, while the fluctuations (2.3c) on the Coulomb systemS become those
of one conducting line [6].

From the averages〈EµEν〉 associated to (2.2), one can compute the Maxwell stress
tensor. Its only non-zero component isTyy . At any point r between the linesy = 0 and
y = W , assuming that there is no potential difference between the lines, one found [7]

βTyy = π

24W 2
. (2.4)

−Tyy is the force per unit length exerted on the Coulomb systemS.

2.3. The high-density limit approach

We now assume that both linesy = 0 andy = W are Coulomb systems, and the high-
density limit is taken on the liney = 0. In that limit, the macroscopic approach [6] for
computing the potential correlations is valid under the same conditions as in section 2.2:r
and r ′ should be at macroscopic distances from the liney = W , but there is no restriction
about their distances to the liney = 0. One finds

β〈8(r )8(r ′)〉T = − ln
∣∣z − z̄′∣∣ if (y, y ′) ∈ ] − ∞, 0[2 (2.5a)

β〈8(r )8(r ′)〉T = − ln

∣∣∣∣(z − z′)
sinh π

2W (z − z̄′)
sinh π

2W (z − z′)

∣∣∣∣ if (y, y ′) ∈ ]0,W [2 (2.5b)
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β〈8(r )8(r ′)〉T = − ln
∣∣z − z′∣∣ if (y, y ′) ∈ ]0,W [×]W,+∞[ (2.5c)

β〈8(r )8(r ′)〉T = − ln
∣∣z − z̄′ − iW

∣∣ if (y, y ′) ∈ ]W,+∞[2 (2.5d)

β〈8(r )8(r ′)〉T = − ln
∣∣z − z′∣∣ if (y, y ′) ∈ ] − ∞, 0[×]W,+∞[. (2.5e)

The difference between the electric potential correlations in this case and the previous
case (equations (2.2)) is the electric potential correlation of a system where there is only
one Coulomb system on the liney = 0 [6]. This difference arises from neglecting the
fluctuations of the conductor aty = 0 in the ideal conductor case.

From (2.5) we obtain the charge correlations

β〈σ(r )σ (r ′)〉T = − 1

2π2

[( π

2W

)2
(

1

sinh π
2W (x − x ′)

)2

+
(

1

x − x ′

)2
]

if y = y ′ = 0 (2.6a)

β〈σ(r )σ (r ′)〉T = −1

2

(
1

2W

)2 (
1

cosh π
2W (x − x ′)

)2

if y = 0 and y ′ = W (2.6b)

β〈σ(r )σ (r ′)〉T = − 1

2π2

[( π

2W

)2
(

1

sinh π
2W (x − x ′)

)2

+
(

1

x − x ′

)2
]

if y = y ′ = W (2.6c)

(Equations (2.6) disregard the microscopic detail; (2.6a) and (2.6b) must be regularized at
x − x ′ = 0.)

The charge correlations in the Coulomb system aty = W are the same in both
approaches (equations (2.3c) and (2.6c)) as it was noticed before in other models [4, 2].
Also the correlation between a point on the conductor (y = 0) and a point on the Coulomb
system (y = W ) is the same in both approaches (equations (2.3b) and (2.6b)). But the
correlation between two points on the conductor aty = 0 differ when the conductor is ideal
(equation (2.3a)) and when it is the high-density limit of a Coulomb system (equation (2.6a)).

The stress tensor is the same as in equation (2.4). This shows that we have the same
results in both approaches for the force exerted on the Coulomb system S. What is special
in the present model and what is general will be discussed in section 3.

2.4. A solvable model

The charge correlations (2.3) and (2.6) can be checked on a solvable microscopic model.
In this section we consider that the Coulomb systemS is a one-component plasma: the
system is composed of particles of chargeq moving in a rigid charged background. The
two-dimensional one-component plasma is a solvable model in several geometries [8–11]
whenβq2 = 2.
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(a) The system such thatC is an ideal conductor has been solved in [12, 13, 7], in
the grand canonical ensemble. Let−qη be the background charge density ofS and ζ the
fugacity. The number densityn and charge correlation in the Coulomb systemS are given
in terms of

g(x) =
∫ ∞

0

dk

2π

eikx

1 + (2πζ)−1e2W(k−2πη)
(2.7)

as

n = g(0) (2.8)

and

〈σ(r )σ (r ′)〉T = −q2|g(x − x ′)|2 + q2nδ(x). (2.9)

It has been shown in [7] that, in the macroscopic limit (ηW � 1), these results agree
with those from the macroscopic approach of section 2.2; (2.9) becomes (2.3a).

(b) The system such thatC is a conducting Coulomb system can also be solved exactly.
Now each line is a one-component plasma. The background charge densities are−qη0 for
the liney = 0 and−qη for the liney = W . Here we work in the canonical ensemble. Let
N be the total number of particles. We consider first that we have two concentric circles,
with radii R andR +W , on which each plasma lies, and then take the limitR → ∞, with
N = 2πη0R + 2πη(R +W), which ensures overall neutrality. Adapting [11] by treating
the radial coordinater as a discrete variable which can have the valuesR andR +W , we
introduce theN orthogonal functions

ψ`(r ) = (
α δr,R + δr,r+W

)
z` 0 6 ` 6 N − 1 (2.10)

wherez = reiθ , δ is the Kronecker symbol, andα is a (positive) parameter which controls
[14] how theN particles are distributed between the two lines. The densityn and charge
correlations are given in terms of the projector

P(r , r ′) =
N−1∑
`=0

9`(r )9`(r ′)∑
r0∈{R,R+W }

∫ 2π
0 |9`(r0, θ0)|2r0dθ0

(2.11)

as

n(r ) = P(r , r ) (2.12)

and

〈σ(r )σ (r ′)〉T = −q2|P(r , r ′)|2 + q2n(r )δr,r ′δ(r(θ − θ ′)). (2.13)

In the limit R → ∞ the two circles become two parallel lines. In this limit it is useful to
definek = `/R. A summation over̀ becomes an integral overk timesR. We change our
system of coordinates: letx = Rθ andy = r − R. The projector becomes

P(r , r ′) = δy,y ′(δy,0P1(x − x ′)+ δy,WP2(x − x ′))+ (δy,0δy ′,W + δy,W δy ′,0)P3(x − x ′) (2.14)
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with

P1(x) = 1

2π

∫ 2π(η0+η)

0

eikxdk

1 + α−2 e2Wk
(2.15a)

P2(x) = 1

2π

∫ 2π(η0+η)

0

eikxdk

1 + α2e−2Wk
(2.15b)

P3(x) = 1

2π

∫ 2π(η0+η)

0

eikxdk

α e−Wk + α−1eWk
. (2.15c)

For a comparison with previous results, we define an alternative control parameterζ by

2πζ = α−2e4πη0W (2.16)

and keepζ fixed as we vary the other parametersη0, η, W .
When the densityη0 of the conductorC becomes infinite, from (2.15b) where we make

the change of variablek → 2π(η0 + η)− k, we obtain

|P2(x)| =
∣∣∣∣ 1

2π

∫ ∞

0

e−ikxdk

1 + (2πζ)−1 e2W(k−2πη)

∣∣∣∣ . (2.17)

Since|P2(x)| as given by (2.17) is identical to|g(x)| as given by (2.7), the density and the
charge correlation function on the Coulomb systemS are indeed identical wheneverC is
an ideal conductor or the high-density limit of a Coulomb system.

A more detailed comparison can be made whenW is macroscopic. Then, neglecting
terms exp(−η0W) and exp(−ηW) in (2.15), after an averaging over oscillations of
microscopic wavelength we obtain

|P1(x)|2 ∼ |P2(x)|2 ∼ 1

4π2

[(
1

x

)2

+
(

π

2W sinh πx
2W

)2
]

(2.18a)

|P3(x)|2 ∼ 1

4π2

(
π

2W coshπx2W

)2

. (2.18b)

The charge correlations obtained from (2.18) agree with the macroscopic ones obtained in
(2.6).

3. General case

In this section we consider the general case ind > 2 dimensions. The conductorC has any
shape and the Coulomb systemS occupies some region of space outsideC. The Coulomb
potential is

G0(r ) =
{ − ln r if d = 2

r2−d if d > 2
(3.1)
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To start with,C itself is considered as a Coulomb system with internal degrees of freedom.
We shall use several quantities related to the electric potential correlations for the

conductorC alone in space. Let8c(r ) be the electric potential atr created by the conductor
C alone and let〈. . .〉T

0 be a truncated statistical average computed with the Boltzmann
weight of the conductorC alone. The correlation〈8c(r )8c(r ′)〉T

0 can be computed by
linear response [6]; it is related to the average electric potential change atr when a unit
charge is put atr ′. This potential change can be computed by macroscopic electrostatics.
If the conductor is grounded, there are two cases:

(a) If r (or r ′, or both) is (are) inside the conductor,

β〈8c(r )8c(r ′)〉T
0 = G0(r − r ′) (3.2a)

(b) If r and r ′ are outside the conductor,

β〈8c(r )8c(r ′)〉T
0 = G∗(r , r ′) (3.2b)

whereG∗ is defined by

1r
[
G0(r − r ′)−G∗(r , r ′)

] = −µdδ(r − r ′) (3.3)

for r andr ′ outside the conductor withµ2 = 2π , µ3 = 4π, . . . , µd = (d−2)2πd/2/0(d/2)
if d > 2, and the conditionG0(r − r ′)−G∗(r , r ′) = 0 if r (or r ′) is on the surface of the
conductor;G0(r − r ′)−G∗(r , r ′) is the electric potential atr created by a unit charge atr ′

in the presence of a grounded ideal conductor. The expressions (3.2) which disregard the
microscopic detail become exact in the limit when the correlation length goes to zero.

Another remark useful for the following sections is that the fluctuations of the electric
potential of a conductorC are Gaussian [6, 15, 16].

Let R be the set of particle coordinates of the conductorC, {ri} the set of theN particle
coordinates of the Coulomb systemS, d0 the element of phase space of the Coulomb system
andH0(R) the Hamiltonian of the conductor. The total energy of the system (S plusC) is

H({ri},R) =
N∑
i=0

qi8c(ri ,R)+
∑

16i<j6N
qiqjG0(ri − rj )+H0(R) (3.4)

whereri and qi are the position and charge of theith particle ofS. There might also be
some short-range interaction between the particles ofS, but we do not write it explicitly in
(3.4) just to have a simpler notation.

In the following sections we shall compute the partition function, the correlations, the
stress tensor and the force exerted on the Coulomb systemS, in the limit when the charge
correlation length of the conductorC goes to zero (we shall call this limit the good conductor
limit) and compare the results to those when the conductor is ideal (i.e. the potential on it
is fixed, say to zero, without fluctuations). For the sake of simplicity we shall only treat in
detail this case of a grounded conductor, but similar results hold for an insulated conductor
(see section 3.5).

3.1. Partition function and statistical averages

The partition function of the total system can be written as

Z =
∫
d0〈e−β∑

i qi8c(ri )〉0e−β∑
i<j qiqjG0(ri−rj )Z0 (3.5)
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where 〈. . .〉0 means the average overR, with the Boltzmann weight exp(−βH0(R)), and
Z0 = ∫

exp(−βH0(R))dR is the partition function of the conductorC alone.
Now, since the fluctuations of8c are Gaussian〈

exp

[
−β

∑
i

qi8c(ri )

]〉
0

= exp

[
1

2
β2

∑
i,j

qiqj 〈8c(ri )8c(rj )〉T
0

]

= exp

[
1

2
β

∑
i,j

qiqjG
∗(ri , rj )

]
(3.6)

where we have used (3.2b). Thus, the partition function becomes

Z = Z∗Z0 (3.7)

whereZ∗ is the partition function of the Coulomb systemS in the presence of an ideal
conductor

Z∗ =
∫

d0 e−βHeff (3.8)

where

Heff(r1, . . . , rN) = −1

2

N∑
i=1

q2
i G

∗(ri , ri )+
∑

16i<j6N
qiqj

[
G0(ri − rj )−G∗(ri , rj )

]
. (3.9)

Heff is indeed the standard Hamiltonian used in the ideal conductor approach. For instance,
in the case of a plane ideal conductor,G∗ is the particle/image interaction; it should be
noted that the interaction−q2

i G
∗(ri , ri ) of a particle with its own image carries a factor1

2
in (3.9).

The total free energy isF = F ∗ + F0 whereF ∗ is the free energy ofS in the presence
of an ideal conductor andF0 the free energy of the conductorC alone. This was noticed
previously in [4] for the model of a two-dimensional plasma near a metallic wall.

Let A({ri}) be a microscopic quantity that does not depend onR. Its thermodynamic
average, by (3.6), is

〈A〉 = 1

Z∗

∫
d0〈e−β∑

i qi8c(ri )〉0e−β∑
i<j qiqjG0(ri−rj )A

= 1

Z∗

∫
d0e−βHeff(r1,...,rN )A

= 〈A〉eff. (3.10)

Thus the average of A can be computed by assuming from the beginning that the conductor
C is ideal.

3.2. Electric potential correlations

Equation (3.10) does not apply to the electric potential correlations because the microscopic
electric potential is different in the cases of a good conductor or an ideal conductor. For
the good conductor case, the microscopic electric potential is
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8(r ) =
∑
i

qiG0(r − ri )+8c(r ) (3.11)

while for the ideal conductor case it is

8id(r ) =


0 if r ∈ C∑
i

qi
[
G0(r − ri )−G∗(r , ri )

]
if r /∈ C. (3.12)

The average electric potential in the good conductor case is

〈8(r )〉 = 1

Z∗

∫
d0

{ ∑
i

qiG0(r − ri )e−βHeff

+ 〈8c(r )e−β∑
i qi8c(ri )〉0e−β∑

i<j qiqjG0(ri−rj )
}
. (3.13)

Since the fluctuations of8c are Gaussian,

〈8c(r )e−β∑
i qi8c(ri )〉0 = −β

∑
i

qi〈8c(r )8c(ri )〉0e
1
2β

2 ∑
i,j qiqj 〈8c(ri )8c(rj )〉0. (3.14)

Using the covariance (3.2), one finds, for allr

〈8(r )〉 = 〈8id(r )〉eff (3.15)

where〈8id(r )〉eff is the average electric potential in the ideal conductor case.
We can compute the electric potential correlations in the same way: the correlation

function in the good conductor case can be written as

β〈8(r )8(r ′)〉 = 1

Z∗

∫
d0

{ ∑
i,j

qiqjG0(r − ri )G0(r ′ − rj )e−βHeff

+ e−β∑
i<j qiqjG0(ri−rj )

[ ∑
i

qiG0(r − ri )〈8c(r ′)e−β∑
i qi8c(ri )〉0

+
∑
i

qiG0(r ′ − ri )〈8c(r )e−β∑
i qi8c(ri )〉0

+ 〈8c(r )8c(r ′)e−β∑
i qi8c(ri )〉0

]}
. (3.16)

Using (3.15)

〈8c(r )8c(r ′)e−β∑
i qi8c(ri )〉0 =

[
β2

∑
i,j

qiqj 〈8c(r )8c(ri )〉0〈8c(r ′)8c(rj )〉0

+ 〈8c(r )8c(r ′)〉0

]
e

1
2β

2 ∑
i,j qiqj 〈8c(ri )8c(rj )〉0 (3.17)

(also a consequence of8c being Gaussian), and the covariance (3.2), we find

〈8(r )8(r ′)〉T = 〈8id(r )8id(r ′)〉T
eff + 〈8c(r )8c(r ′)〉T

0 . (3.18)

Thus, the correlation function in the presence of a good conductor is the correlation
function in the presence of an ideal conductor plus the correlation function for the good
conductor alone in space.

This is what was noticed in the example of section 2.
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3.3. Charge correlations

If we are interested in charge correlations in the Coulomb systemS, equation (3.10) applies
because the microscopic charge density outside the conductor

ρ(r ) =
N∑
i=1

qiδ(r − ri ) (3.19)

does not depend on the coordinatesR; thus the charge correlations insideS are the same
in both approaches. The surface charge density onC is given by the discontinuity of
the normal electric field, thus using (3.15) we find that the average charge density is the
same in both approaches. The same holds for the correlation between the density inS and
the surface charge density onC. But, if we are interested in charge correlations on the
conductorC, the correlations are different in the two approaches. Using equation (3.18) we
can compute the difference in the electric field correlations and from it the difference in the
charge correlations on the surface ofC; this difference is the surface charge correlation on
C when it is alone in space.

The example of section 2 illustrates these general results.

3.4. The stress tensor and the forces exerted on the Coulomb system

The Maxwell stress tensor is

Tµν = µ−1
d

〈
EµEν − δµν

2
E 2

〉
(3.20)

whereE = −∇8 is the electric field. LetV be some volume outside the conductorC. The
total average electric force onV is

F =
∫
∂V

T · dd−1S =
∫

V
∇ · T (r )dd r . (3.21)

It can be shown that this force is the same in both models although the electric potential
correlations are different and consequently the stress tensor might be different. Indeed, from
equation (3.18), the difference between the stress tensor in the good conductor case and the
ideal conductor case is

Tµν(r )− T id
µν(r ) = µ−1

d

(
∂µ∂

′
ν − δµν

2
∂σ ∂

′
σ

)
G∗(r , r ) (3.22)

where ∂ (respectively∂ ′) means partial differentiation with respect to the first (second)
argument ofG∗. The difference of the divergences is

∂µ
[
Tµν(r )− T id

µν(r )
] = µ−1

d

(
∂ ′
ν∂µ∂µG

∗(r , r )+ 1
2∂µ∂

′
µ

[
∂ ′
νG

∗(r , r )− ∂νG
∗(r , r )

])
. (3.23)

Now, from (3.3)∂µ∂µG∗(r , r ) = 0, and sinceG∗ is symmetrical∂ ′
νG

∗(r , r ) = ∂νG
∗(r , r ).

Thus, (3.23) is zero and the force is the same in both models.
In the example of section 2, the stress tensor itself was the same in the presence of

either a good conductor or an ideal conductor. But this was an effect of the very peculiar
symmetry of the model (invariance by translations along thex axis).
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A direct evaluation of the average force exerted on one particle of the system confirms
that the two approaches give the same result. Let d0N−1 be the phase space element of the
systemS when theith particle is fixed andZ∗

N−1 the partition function of the systemS in
presence of an ideal conductor when theith particle is fixed. The average force exerted on
the ith particle in presence of a good conductor is

〈Fi〉 = − 1

Z∗

∫
d0N−1

{
∇i

[∑
l<k

qlqkG0(rl − rk)

]
e−βHeff

+
〈
∇i

[∑
l

ql8c(rl)

]
e−β∑

k qk8c(rk)

〉
0

e−β∑
l<k qlqkG0(rl−rk)

}
. (3.24)

In the last term〈
∇i

[∑
l

ql8c(rl)

]
e−β∑

k qk8c(rk)

〉
0

= −β−1∇i

[
〈e−β∑

k qk8c(rk)〉0

]
= −β−1∇i

[
e
β

2

∑
kl qkqlG

∗(rk ,rl )
]

= −∇i

[∑
kl

qkql

2
G∗(rk, rl)

]
e
β

2

∑
kl qkqlG

∗(rk ,rl ).

(3.25)

Using (3.25) in (3.24) gives

〈Fi〉 = 〈F id
i 〉eff. (3.26)

We obtain the same average force by both approaches.

3.5. The insulated conductor case

In the former calculations we assumed that the conductorC was grounded. The same
calculations can be carried out if the conductorC is insulated. Equations (3.7), (3.10),
(3.15), (3.26) still hold for the insulated conductor case. The expression ofHeff now is
a different one but it is still the Hamiltonian of the systemS in the presence of an ideal
conductor: everywhereG∗(r , r ′) must be replaced byG∗(r , r ′)+Q(r ) V (r ′) whereQ(r )
is the charge created by the influence of a unit charge atr on the grounded conductor and
V (r ′) is the electric potential atr ′ created by the conductor carrying a unit charge. The
important fact to notice is that the relation (3.18) between the different potential correlation
functions is still valid.

4. Conclusion

Two different methods for treating the problem of a Coulomb system near a conductor have
been compared.

The first method, where the conductor is considered from the beginning as ideal, neglects
all fluctuations in the conductor. The second method treats the conductor as a conducting
Coulomb system the charge correlation length of which goes to zero. Even in that limit, the
fluctuations in the conductor do not vanish. This modifies the electric potential correlations
by a term given by the electric potential correlation when the conductor is alone, but the
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average electric potential is not modified. Because of this, quantities such as the electric
field and charge density will have the same properties: their average is the same in both
methods but their correlations differ by the correlation for the conductor alone. However,
in the case of the charge correlations, this difference vanishes outside the conductor.

The free energy in the good conductor case is just the sum of the free energy in the
ideal conductor case plus the free energy when the conductor is alone in space.

The average stress tensor is modified only by a term the divergence of which is zero,
so the average force exerted on any part of the Coulomb system is not modified. However,
the fluctuations of these forces will in general be different in the two methods.
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